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Abstract

Three designs for a Lighter Than Air (LTA) structure that achieve positive
buoyancy using a vacuum in place of a lifting gas were proposed and evaluated. Before
the first human flight it was predicted that LTA flight was possible through the use of a
light weight structure maintaining an internal vacuum. Since that time LTA flight has
been used to accomplish various missions through the use of lifting gases. This study was
conducted in response to an anticipated shortage of helium, the danger of hydrogen, and
the possibility of using LTA vehicles as a means of passenger or cargo transportation.
The improvements required of traditional LTA vehicles to become viable methods of
transportation were examined and found to be buoyancy control, ground handling, and
efficiency. Efficiency was evaluated using von Karman efficiency which enabled
comparison between vehicles of different types and missions based on velocity, payload
and power required. Von Karman efficiency was also used to compare theoretical LTA
vehicles of constant size over a range of engine sizes. Vacuum LTA structures were
evaluated based on their ratio of structure weight to the weight of displaced air and
termed Weight/Buoyant Force (W/B) where a W/B<I corresponds to positive buoyancy.

Two methods of geometrically stiffening a sphere were investigated. A thin
shelled sphere stiffened with an isogrid of blade type stiffeners using Ultra High Modulus
(UHM) carbon epoxy was predicted to give a W/B= 0.81 which would enable LTA flight.
The same design with a beryllium skin and UHM carbon epoxy stiffeners was predicted
to have a W/B=0.79. A geodesic sphere composed of a frame of cylindrical, UHM,

carbon epoxy, pultruded rods with a thin membrane stretched over it was evaluated using

v



Finite Element Analysis with the frame modeled as clamped, cylindrical beam elements.
A W/B=0.57 was calculated for the frame. The skin was predicted to add approximately
0.37 to the W/B if Zylon was used to reinforce a Mylar membrane, which would result in
a structure with an overall W/B=0.94. If a material as strong as graphene were used for
the skin the skin would have a W/B=0.001, resulting in an overall W/B=0.57. These
structures were optimized using a non-linear programming optimization routine in
Matlab.

A unique LTA vehicle concept composed of twin counter-rotating cylinders that
made use of a virtual elliptical body to reduce drag and maintain structural integrity with

a vacuum was also investigated and found to be infeasible.
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DESIGN OF A LIGHTER THAN AIR VEHICLE THAT ACHIEVES POSITIVE
BUOYANCY IN AIR USING A VACUUM

I. Introduction

1.1 Motivation

Lighter Than Air (LTA) vehicles have historically used lifting gases to achieve
positive buoyancy in air. Buoyancy is defined as the force exerted on an object by the
fluid in which it is submerged. This force is due to the difference in pressure at the top of
an object vs. the bottom of the object. There is a difference in pressure because of the
weight of the column of fluid surrounding the object. Positive buoyancy is defined as the
weight of an object being less than the weight of the fluid it displaces. Negative buoyancy
is defined as the weight of an object being more than the weight of the fluid it displaces,
in other words, it tends to sink. Neutrally buoyant means the object is the same weight as
the fluid it displaces, so that the force of buoyancy is equal to the object’s weight [1]. A
vehicle could theoretically achieve positive buoyancy through the use of a vacuum in
place of a lifting gas. The difficulty of designing a vacuum LTA structure has prevented
it from being used in the past. The primary advantage of a vacuum LTA structure would
be the elimination of the requirement to purchase or transport a lifting gas.

If a vacuum could be used to replace lifting gas, it would require a suitable
mission to make it more than just an expensive parlor trick. There are various niche
missions currently filled by LTA vehicles, but they are currently unable to compete with
the mainstream modes of transportation. The vacuum LTA vehicle was evaluated to

determine missions for which it was suited. One such mission motivated the first sponsor



of this research to investigate the following line of reasoning: Small, regional airports are
largely underused while major airports are often congested. A vehicle capable of
efficiently carrying cargo while operating out of small airports would fill a niche
transportation market. This would require a vehicle that could land on short runways with

large payloads. Could the vacuum LTA vehicle possibly be a solution to this challenge?

1.2 Background

In 1670 Francesco Lana de Terzi published a book titled, “Prodromo dell'Arte
Maestra” in which he proposed the design of a LTA vehicle that he theorized would
attain positive buoyancy in air using a vacuum [2]. His structure resembled a ship and
was suspended from four thin-shelled copper spheres as shown in Figure 1 [3] .
Unfortunately copper does not have a high enough specific stiffness to achieve positive
buoyancy in air using a smooth shell, as will be shown in the theory section of this thesis.
Nevertheless, Lana correctly understood that the principal of buoyancy could be applied
to air and that the sphere was the ideal shape for a LTA vacuum enclosure. The sphere is
the ideal shape for a vacuum enclosure because it requires the minimum thickness to
achieve the stiffness required to prevent buckling of any shape. It also has the minimum
surface area per volume of any shape, which maximizes buoyancy, minimizes pressure

loading, and minimizes weight.



Figure 1: Lana’s Flying Boat [3]

During the course of this research it was not uncommon to find blogs and even
published papers musing about the possibility of vacuum LTA structures. Most of the
authors did not apply engineering principles to the problem. The most common
misconception was that if a sphere was made big enough the problem would get easier
because of the squared cube law. The idea behind the squared cube law is that the area of
the sphere grows at a rate of radius squared, while the displaced volume of air grows at a
rate of radius cubed. This is true, but the fallacy of this argument is in not understanding
that the thickness of the sphere must grow as well. The tendency for a thin shelled sphere
to buckle under external pressure is a function of the thickness of the shell as shown by

equation (14) [4, p. 1292]. To prevent buckling, the thickness must grow proportionally


http://upload.wikimedia.org/wikipedia/commons/5/52/Flying_boat.png

with the surface area of the sphere, so that no matter how big it is, the weight of the
sphere remains proportional to the weight of the air displaced.

Akhmeteli and Gavrilin claimed that a vacuum LTA structure could be
constructed using layered shell sandwich construction [5]. Their approach to the vacuum
sphere formed the basis for equation (23) which not only shows why copper cannot be
used to form a thin shelled, positively buoyant vacuum sphere, but why no material
available today could either. Only a geometrically stiffened shell, such as the sandwich

construction investigated by Akhmeteli and Gavrilin, could possibly achieve this feat.

1.3 Research Objective

For a theoretical vehicle to be operationally viable, it must achieve performance
comparable to or better than existing vehicles with similar mission types. The C-27] was
designed to transport cargo to small airports relatively efficiently. One purpose of this
thesis was to determine whether a vacuum LTA vehicle could effectively perform the
same mission as the C-27J. Therefore it became necessary to evaluate the C-27J
capabilities and compare it to any proposed vacuum LTA vehicle design. The C-27J)

specifications are listed in Table 1, [6].



Table 1: C-27J Specifications [7]

Dimensions
Span 28.70m 94.16ft
Length 22.70 m 74.48 ft
Height 9.65m 31.6ft
Wing area 81.94m 882 ft

Weights

Normal Landing Weight 27,500 kg 60,627 lb
Maximum Takeoff 31,800 kg 70,107 lb

Power Plant
Engine Rolls-Royce AE 2100-D2
Engine Power 4637 Shaft Horse Power
Propeller Dowty R-391 six-blade

Performance (clean, ISA)

Maximum Service Ceiling 9,144 m 30,000ft
Maximum Cruise Speed 315 KTAS
Landing Ground Roll 340 m 1,115 ft
(Maximum Landing Weight, Sea Level)

LTA vehicles are generally stable, limited in speed, have long loiter times, large
payloads, and poor handling qualities in the landing environment. These characteristics
have largely relegated them to niche markets such as surveillance, communication relays,
and advertisement. Table 2 lists key questions that must be answered in order to

determine whether a vacuum LTA vehicle is a feasible concept.


http://upload.wikimedia.org/wikipedia/commons/3/3d/Alenia_C-27J_(Pratica_di_Mare)_edit1.jpg

Table 2: Research Questions

Can positive buoyancy be achieved by a structure in air using a vacuum?
Is a vacuum LTA structure a feasible platform for any existing missions?
What is the ideal internal pressure of a partial vacuum LTA structure?
What is the ideal operating altitude of a vacuum LTA structure?

Are there viable geometric shapes for a vacuum LTA structure?

Do construction techniques exist which can construct the required
geometric shapes?

What are the critical material properties for a vacuum LTA structure?

8 Do materials exist from which a vacuum LTA structure can be
constructed?

NN | B |W[ N —

|

1.4 Thesis Overview

Is LTA flight possible using a vacuum? During the course of this investigation
von Karman’s efficiency was used to compare theoretical vehicle design spaces to
existing vehicles. A unique vehicle consisting of counter-rotating cylinders that take
advantage of a virtual elliptical body to minimize drag was proposed and evaluated for its
energetic feasibility. A program was developed in Matlab that optimized the geometry of
a geodesic sphere through the use of built in optimization functions and finite element
analysis. All of these investigations attempted to answer the research questions posed in
Table 2.

The literature review section examines historical LTA vehicles to determine the
criterion for a successful LTA vehicle. It further defines the problem of constructing a
vacuum sphere through the study of thin shelled spheres under pressure. Finally, it
introduces the two methods of geometrically improving upon a thin shelled sphere that
were used in this study. These are stiffening of a thin shell using blade type stiffeners
arranged in an isogrid and a geodesic sphere of cylindrical beams supporting a thin

membrane.



The methodology section introduces the counter-rotating cylinder LTA vehicle
and explains the methods used to evaluate its feasibility. It explains the methods used to
evaluate an isogrid design. Finally, it describes how the geometry of a geodesic sphere
was calculated, evaluated, and optimized.

The results section gives an answer to the viability of each of the proposed
methods for achieving positive buoyancy using a vacuum. The vehicle design spaces are
plotted on a von Karman efficiency graph. The design spaces of the isogrid stiffened
sphere and geodesic spheres are graphed for a visual representation of the optimization
performed on each structure. The thesis concludes by answering the questions posed in
the objective section along with recommendations for further study. The appendix

contains samples of the Matlab code used to perform each part of this study.

I1. Literature Review

2.1 Chapter Overview

There is a scarcity of literature available on vacuum LTA vehicles, which is not
surprising considering none have yet been built. However, each of the components
required for a successful vacuum LTA vehicle have been extensively studied and
published. The focus of this section is to introduce LTA vehicles, their structures,
missions, and potential areas for improvement.

Although a vacuum LTA structure has apparently never been built, there has been
extensive research into the buckling of pressure vessels under external pressure. This

section examines the empirically derived formulas for failure of a sphere and applies



them to the problem of achieving positive buoyancy in air. After establishing that a thin
shelled sphere constructed of contemporary materials cannot achieve positive buoyancy
in air using a vacuum, this section presents two possible methods of geometrically

stiffening a sphere to prevent buckling without adding too much weight. These methods

are an isogrid stiffened sphere and a geodesic sphere.

2.2 Historical LTA Vehicles

LTA vehicles have a long history of impressive achievements and yet have been
relegated to filling niche mission profiles. These achievements include the first human
flight, accomplished in a hot air balloon by Jacques-Etienne Montgolfier in 1782 [8, p. 2]
and the first passenger airline Deutsche Luftschiffahrts-Aktiengesellschaft (DELAG) in
1909 [9]. In 1917 the L-59 “Africa Ship” proved the feasibility of intercontinental
zeppelin travel by carrying 15 tons of cargo and 22 persons on a 4,225 mile flight during
a supply mission to German East Africa [9]. The qualities of LTA vehicles enabled them
to accomplish missions unsuitable for other vehicles, but also historically prevented them
from competing against mainstream methods of transportation. Of primary importance to
this study is airship structure, mission profiles, and potential for improvement on
historical designs.

2.2.1 Airship Structures

Airship structures can be organized into three primary categories; rigid, semi-
rigid, and non-rigid. Each of these structures have qualities that significantly impact

operational capabilities.



2.2.1.1 Rigid

Rigid structures consist of a rigid frame with a skin stretched over the outside as
shown in Figure 2 [10]. The frame distributes loads throughout the ship. The original
Zeppelins consisted of an aluminum frame surrounded by a permeable cloth skin.
Hydrogen lifting gas was contained within animal skin ballonets inside the structure.
Weight/Buoyancy (W/B) for these structures was poor, requiring large volume to achieve
useful designs. Modern material and construction technologies can significantly decrease
the weight of rigid frames and skins through the use of carbon composites and advanced
fabrics and membranes. A modern example of a rigid airship is the experimental
Aceroscraft created by the Aeros company [11]. Rigid structures are able to maintain their
shape because of the rigid nature of their structures. This enables the design of lifting
bodies as well as the ability to withstand large aerodynamic loads without significant
warping. Rigid structures also transmit loads throughout the structure which enables
mounting of engines, gondolas, and control surfaces. This enables improved
controllability by side mounted, vectored thrust engines, reduced drag by internally
placing payloads, and optional hybrid lift by taking advantage of a lifting body shape.
Hybrid lift is the use of aerodynamic lift in addition to buoyant lift. Although
aerodynamic lift incurs significant drag in the case of a LTA vehicle, it allows take off

and landing in a heavier than air configuration which improves ground handling.



Figure 2: USS Shenandoah Rigid Construction [9]

Disadvantages to the rigid airship design include increased weight for the frame
[8, p. 22] and poor damage tolerance due to the rigidity of the structure [9, p. 150].
Whereas a non-rigid structure can bend without damaging the structure when design
bending moments are exceeded, a rigid structure will be damaged when bending
moments are exceeded.

An interesting variation of the rigid airship design is the metal-clad airship as
shown in Figure 3 [12]. The US Navy Metal Clad Airship (ZMC)-2 consisted of an
aluminum skin with aluminum stringers riveted together. The ZMC-2 was notable for its
ability to retain the helium lifting gas much longer than contemporary LTA vehicles [12].

This was due to the low permeability of the aluminum skin. It was also notable for its low
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fineness ratio (1), which is defined by equation (11) and is the ratio of length to diameter,
which was chosen to add strength to the structure [8, p. 57]. The low A strengthened the
ZMC-2 by decreasing bending moments and increasing the resistance to bending [13, p.
163], [12]. There are published equations for calculating moments on an airship in [13, p.
163], but a simplified explanation as to why low A decreases moments and increases
resistance to moments can be made by picturing the LTA vehicle as a cylinder. The
longer the cylinder, and thus the higher A, the higher the bending moments the LTA
vehicle will experience simply due to a longer moment arm. For a given volume, a higher
A corresponds to a lower radius, which in terms of a cylinder would mean less resistance
to bending. Also, as length increases and volume remains the same, cross sectional area
also increases, thus increasing loading due to gusts. A low A decreases stability because
of the lower rotational inertia and moment arm when compared to a higher A, requiring

relatively large stabilizers on the ZMC-2.
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Figure 3: ZMC-2 Metal Clad Airship ca. 1930 [12]

2.2.1.2 Semi-Rigid

Semi-rigid airships consist of a rigid internal frame surrounded by an inflated skin
that maintains shape through the use of internal pressure. These structures carry the
advantages of both the rigid and non-rigid designs. The rigid internal frame distributes
loads throughout the ship and enables freedom to mount engines, payloads, and control
surfaces anywhere on the airship. The pressure supported skin enables a smaller internal
frame that is strength, not shape, oriented, thus reducing weight.

A modern example of the semi-rigid airship is the Zeppelin-NT, which has an
internal frame as shown in Figure 4 [14]. The Zeppelin-NT rigid frame is composed of
triangular trusses that run the length of the airship. The skin touches the frame at specific
points but maintains its shape through internal pressure. This airship can conduct ground

handling with a crew of three people using vectored thrust [15]. Vectored thrust is made
12



possible by the side mounting of its engines, which is made possible by the internal
frame.
2.2.1.3 Non-Rigid

Non-rigid airships consist of an inflated gas envelope that maintains shape
through internal pressure. These structures are popularly referred to as “blimps”. In order
to withstand mooring and aerodynamic forces, the bows of non-rigid airships generally
have rigid caps. There is also usually a rigid structure at the stern for mounting the
stabilizers. The gondola generally hangs externally from a canopy that distributes forces
over a large portion of the gas envelope as shown in Figure 4 [14]. A modern example of
a non-rigid airship is the 1960s era Goodyear Blimp as shown in Figure 4. Non-rigid
airships do not require significant structures and therefore can achieve low W/B and high
altitude such as the Lockheed Martin High Altitude Long Endurance Demonstrator. They
also have the added advantage of being resilient. If the design bending moment of a non-
rigid airship is exceeded, the skin may temporarily kink, but unlike the rigid airship, it
will not be damaged[13, p. 164]. This is because internal gas pressure provides structural

support as opposed to a rigid structure.
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Figure 4: Semirigid, Nonrigid, Rigid Airships [14]
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2.2.2 Missions

The original mission of the LTA vehicle was aerial reconnaissance. In 1806
Frenchman Jean Coutelle was lifted 450 meters in a tethered balloon to observe enemy
formations and movements in the French Revolution [8, p. 2]. Airships were used in the
American Civil War, the Franco-Prussian Wars, World War I and World War II [8, p. 2].
During that time Airships conducted passenger and cargo transportation, reconnaissance,
and bombing. As heavier than air flight technology matured, LTA vehicles were replaced
by heavier than air vehicles for many of these missions. Today LTA vehicles, to include
unmanned airships and aerostats, are primarily used as sensor platforms and
communications relays [16]. Airships in particular are used for product recognition,

advertising, tourism, and as commercial aerial photography platforms [17]. The
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endurance, lift capacity, and stability of LTA vehicles makes them well suited for these
missions, but there are aspects of LTA vehicles that prevent them from being used for
cargo or passenger transportation. These aspects are design challenges that must be
overcome if the LTA vehicle is to become a viable competitor in the transportation
establishment.

2.2.3 Design Challenges

The first design challenge of LTA vehicles is ground handling, which historically
requires robust hangars and mooring capabilities. A related design challenge is buoyancy
control which significantly affects mooring and taxiing. Lifting gases pose unique supply
and operational problems that must be addressed. Efficiency, as it relates to velocity and
fuel requirements, is the final design challenge.

An important aspect of LTA history is written in the mishap record. The mishap
record has recurring themes that shed light on the design challenges of LTA vehicles. It is
the duty of the operator to recognize these themes in order to avoid repeating the
mistakes of the past, and the duty of the engineer to prevent future loss of life and
property through the improvement of design. Because this is a design oriented study, it
proved fruitful to study the mishap record. The mishap study gave clear answers to
several of the questions posed in the objective section about how to make the LTA
vehicle competitive as a cargo